Results of a four-year IAEA Coordinated Research Project
(CRP) on improving system and safety analysis of sodium cooled fast
reactors (SFRs) are now available. The recently published IAEA TECDOC, Benchmark Analysis of EBR-II Shutdown Heat Removal Tests, is a result of work done by experts from 19 organisations in 11 Member States.
The SFR technology development traces its beginnings to the Experimental Breeder Reactor I (EBR-I) at Argonne National Laboratory in the United States, which first generated useable amounts of electricity in December 1951. The succeeding decades saw construction and operation of experimental and prototype fast reactor facilities in the US, the Soviet Union, the United Kingdom, France, Germany, Japan and India. At present, a new generation of fast reactors have been introduced with the BN-800 in Russia operating since 2015, the China Experimental Fast Reactor (CEFR) operating in China since 2011 and the Prototype Fast Breeder Reactor (PFBR) under construction in India since 2004.
SFRs represent a significant advance over established and evolutionary light water reactor designs in terms of efficient resource utilization, passive safety1, reliability and management of high-level waste.
The SFR technology development traces its beginnings to the Experimental Breeder Reactor I (EBR-I) at Argonne National Laboratory in the United States, which first generated useable amounts of electricity in December 1951. The succeeding decades saw construction and operation of experimental and prototype fast reactor facilities in the US, the Soviet Union, the United Kingdom, France, Germany, Japan and India. At present, a new generation of fast reactors have been introduced with the BN-800 in Russia operating since 2015, the China Experimental Fast Reactor (CEFR) operating in China since 2011 and the Prototype Fast Breeder Reactor (PFBR) under construction in India since 2004.
SFRs represent a significant advance over established and evolutionary light water reactor designs in terms of efficient resource utilization, passive safety1, reliability and management of high-level waste.