Spent Fuel Casks 101 — What We Regulate and Why
September 22, 2015
Posted by on Director, Division of Spent Fuel Management
We talked back in March about dry casks for storing spent nuclear fuel and how they work. Today we want to introduce you to the different things the NRC looks at each time we review a cask application.
To recap: spent fuel is placed into cooling pools at reactor sites when it can no longer efficiently sustain a nuclear reaction. Dry casks give utilities an alternate way to store their spent fuel, freeing up space in the pools. They were first developed back in the 1980s because space in the pools – designed for temporary storage – was growing short.
Our requirements for dry cask storage can be found in 10 CFR Part 72. All structures, systems and components important to safety must meet quality standards for design, fabrication and testing. And they must be structurally able to withstand wind, rain, snow and ice, temperature extremes, hurricanes and tornadoes, earthquakes, and fires and explosions.
Part 72 and related NRC guidance on casks and storage facilities also detail specific engineering requirements. Casks must be designed to keep water out so the fuel can’t have a chain reaction, as it would in a reactor. The casks must also shield workers and the public from radiation. They must safely remove the heat remaining in the spent fuel. And the materials used in dry casks and their physical properties must be well-understood and analyzed.
The NRC has dozens of experts in different scientific and engineering disciplines whose job is to review cask applications (which can be hundreds of pages long) and the detailed technical designs they contain. We will explain in more detail in later blog posts what our experts look for and how they go about approving a cask design.
No comments:
Post a Comment